International Arctic Systems for Observing the Atmosphere (IASOA)

Aethalometer Measurements of Equivalent Black Carbon in the Arctic observatories as part of IASOA - Taking the Steps Forward

Sangeeta Sharma
Climate Research Division
Science and Technology Branch
Environment Canada
May 3, 2013

Acknowledgments:

Sandy Starkweather, Organizer, IASOA, NOAA/ESRL

PI of observatories for Aethalometer Measurements:

- 1) Barrow John Ogren, for Russ Schnell, NOAA/ESRL
- 2) Alert Sangeeta Sharma, EC
- 3) Ny-Ålesund Kostas Eleftheriadis, Kjetil Torseth, NILU
- 4) Pallas Heikki Lihavainen, FMI
- 5) Station Nord Andreas Massling, DMU
- 6) Summit John Ogren for Russ Schnell, NOAA/ESRL
- 7) Tiksi Taneil Uttal, NOAA/ESRL

John Ogren, Richard Leaitch, Tony Hansen, Markus Fiebig and Thomas Mueller at TROPOS for useful discussions.

Outline:

- 1) Definition of black carbon and what are the techniques?
- 2) What are we measuring with Aethalometer?
- 3) What are the issues related to these measurements?
- 4) How accurate these measurements should be to satisfy the modeling community?
- 5) What are the next steps in moving forward?
 - 7 Arctic sites as part of IASOA
 - Data Portals, data format, various corrections
 - recommendations for corrections

What is Black Carbon?

- Carbonaceous particulate matter
 - a high fraction of which is sp²-bonded carbon
- Consists of aggregates of spherules
 - Individually, from <10 to (typically) 50 nm in diameter
- Refractory
- Insoluble in water
- Strongly absorbs light across all visible wavelengths
 - when freshly emitted, has a mass absorption efficiency of at least 5 m² g⁻¹ at the mid-visible wavelength of 550 nm

Petzold et al., 2013

"BC" Measurement Methods

- Light Absorption Coefficient (σ_{ap})
 - Derived from optical methods, e.g.,
 - Filter-based (aethalometer, PSAP, MAAP, COSMOS)
 - Suspended particles (e.g., photo-acoustic, extinction minus scattering)
 - Equivalent Black Carbon (EBC) mass
 - derived from σ_{ap} using a mass absorption efficiency α_{ap} (MAE)
 - the MAE used to calculate EBC must be specified
 - BC Properties: absorption
- Elemental Carbon (EC)
 - Derived from measurement of CO₂ evolved from thermal or thermo-optical methods
 - e.g., IMPROVE, TOT_900 EC or EUSAAR protocols
 - BC Properties: composition, refractory, absorption
- Refractory Black Carbon (rBC)
 - Derived from laser incandescence methods
 - BC Properties: composition, refractory, absorption

Blind Men and the Elephant

Interpreting "BC" Measurements

Recommended Terminology

- No current method combines all five essential characteristics of BC
- Consequently, no current method can justifiably claim to provide a quantitative measurement of BC
- Recommendations
 - Use "BC" as a qualitative term referring to any of the quantitative methods
 - the source/method of "BC" observations should be identified by using the respective terms EBC, EC, or rBC as shown previously

Petzold et al., 2013, ACPD

Aethalometer - Principle of Measurements of Equivalent Black Carbon (EBC)

Light absorption inferred measurement

AE31-7 λ

UV 350 nm
Blue 450 nm
Green 571 nm
Yellow 590 nm
Red 660 nm
IR-1 880 nm
IR-2 950 nm

Aethalometer – *Continuous* optical analysis

Hansen, Rosen and Novakov (1984)

λ=wavelength α_{ap}=Mass absorption Efficiency (MAE)

1) What are we measuring with Aethalometer?

Equivalent Black Carbon -the equivalent mass concentration of black carbon that produces the same attenuation as measured by the aethalometer

Different response to particles by combustion sources

- Fossil fuel (black)
- wood combustion (wild fires) brown carbon or
- organics that are darker in colour (Humic Like Substances)
- dust

Dependence of Absorbance by EBC

- wavelength
- aerosol ageing, thus composition and size of particle
- morphology of particle (e.g., small monomeric clusters or fractals or agglomerated fractals)

2) Challenges with the Aethalometer measurements?

- Enhancement in the absorption of deposited particles i) due to fibrous filter matrix
 - ii) as accumulation of aerosol increases leads to "shadowing effect" – response of aethalometer decreases as loading increases
 - iii) Scattering of transparent aerosol embedded in the filter -This can reduce the shadowing effect.

i) Enhancement in absorption due to fibrous Quartz filter matrix – multi-reflections

**Higher Mass Absorption Efficiency (MAE) is used instead of 8-10 m²g⁻¹.

-Different models use different MAE

- •Old AE6 incandescent lamp with broadband peaking near IR; α*ap* or MAE= 19 m² g⁻¹
- •AE16- advanced tape one wavelength 880 nm alpha or αap = 16 m² g⁻¹
- •AE31 7 wavelength αap = 14625 / λ

Lamp λ (nm)	αap (m²/g)
UV 370	39.5
Blue 470	31.1
Green 520	28.1
Yellow 590	24.8
Red 660	22.2
IR-1 880	16.6
IR-2 950	15.4 13

ii) Loading effects as aerosols accumulate (shadowing) -seen as filter tape advances to a fresh spot

Filter photometer loading effects

The relationship of ATN / BC becomes non-linear

Courtesy of Tony Hansen

Loading effects in ambient data

Fresh emission influence vs aged particles

ATN

Courtesy: Tony Hansen

Correction is smaller for aged than fresh particles Slope k=∆BC/∆ATN is variable

- -Location and season
- -composition internal vs external mixing
- -aerosol ageing

iii) Aerosol loading/Scattering Effects- Various Correction schemes Results: Aerosol type, size and morphology thus Site Specific

- 1) Weingartner et al., 2003; Absorption of light by soot particles: determination of the absorption Coefficients by means of aethalometers, Aerosol Science, 34, 1445-1463
- 2) Arnott et al., 2005; Towards Aerosol Light Absorption Measurements with a 7-w aethalometer: Evaluation with Photoacoustic Instrument and 3-w Nephelometer, Aer. Sci. & Tech., 39,17-29
- 3) Virkkula et al., 2007; A simple procedure for correcting leading effects of Aethalometer Data, JAWMA, 57:10, 1214-1222
- 4) Schmidt et al., 2006, Spectral light absorption by ambient aerosols influenced by biomass burning in the Armazon basin. I: Comparison and field calibration of absorption measurement techniques, Atmos. Chem. Phys., 6, 3443-3462.
- 5) Collaud Coen et al., 2010; Minimizing light absorption measurement artifacts of the Aethalometer: evaluation of five correction algorithms, Atmos. Meas. Tech., 3, 457-474.

Reference methods=Photoacoustic, extinction –scattering and MAAP **Highlights from these papers:**

- -Enhancement by 2.1 for uncoated soot and 3.6 by coated soot (1)
- -AE overpredicts EBC at the start of filter change and underpredicts as filter gets dirtier (2) i.e., response of aethalometer decreases with aerosol loading
- -AE responds to non-absorbing aerosols
- -AE correction factor is seasonal; clean site filter change only causes 3% increase (3)

3. Comparisons of uncorrected aethalometer measurements with the other techniques

Technique		Ratio AE to technique	Locations	Reference
Thermal	EC/OC	0.5 to 2	Remote, Rural, urban	European sites; Liousse et al., 1996;
		1 to 2	Remote, Urban to rural	Canadian sites; Sharma et al., 2002;2004
Multiple Angle Absorption	absorption	2.4 to 3.6	Rural to urban Europe	Collaud Coen et al., 2010
Photometer (630nm)		1.4-1.6	Leipzig, Germany	Eusaar/GAW2005 Müller et al., 2011
Photoacoustic (PAS)	absorption			Schmidt et al., 2006
Single Particle Soot Photometer (SP2)	refractory black carbon	1.5-2.5	Alert Spring Alert Summer	NOAA annual meeting

Some method comparisons at Alert

4. Steps forward - Arctic Stations conducting **Aethalometer Measurements**

Different AE models

Remote locations

-long range **Transport of air**masses -aerosol type **Internally mixed** -SSA > 0.96

What would be the enhancement in EBC??

Aethalometer and other measurements at 7 Arctic stations

System	Station	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
Equivalent Black Carbon Mass Conc (AE)	Barrow						j								00	50		0.	00			j i			
	Alert																								
	Summit	(i)						- 3																	
														- 1											
		10 50						07		50					- 3	07							T I		
	Pallas																								
	Tiksi	0						65 65		0														j j	
	Barrow																								
	Alert							. 81																	
Aerosoi	Summit															- 0									
Absorption	Station Nord	\$8 55						- 84		100					9	- 68		86 86							
Coefficient	Ny-Alesund																								
(PSAP, MAPP)	Pallas							. 8																	
	Tiksi																								
	Barrow	85			* *			-																	
4	Alert	Ø	-:		E 3	ř is	2.5			0						- 1		2	0				1		- 1
	Summit	***				- 1	î	- 8		**			•		7										
	Station Nord	8			1		12	- 35		0					- 13	- 45		86-	-:						- 25
	Ny-Alesund	8			9	- 7							9												
The second secon	Pallas	Ø			i		- 1	- 6		0				10		- 1								- 1	- 1
	Tiksi	100																							
	Barrow	0																							- 1
	Alert							· · · · · ·																	
20 3	Summit	0						- 99		(C)						91		8						- 3	- 31
Number	Station Nord																								
Concentration	Ny-Alesund	0						- 35					2 2		9	50					2				
	Pallas																								
3	Tiksi	00					8	- 3							- 1	31		8						3	38
Aerosol Optical Depth	Barrow						Î																		
	Alert	70					1	- 1		22															22
	Summit																				Ì				
	Station Nord	70								10					3	07		0			8			07	09
	Ny-Alesund																								
	Pallas	56						100		20													- 1	10	- 1
	Tiksi							-																	

Data Submission to data portals: Need consistency

1) http://ebas.nilu.no - data available as light absorption (Mm)-1

Alert Aethalometer

Alert PSAP Summit PSAP Pallas MAAP

Ny Ålesund (Zeppelin) **Aethalometer**

Zeppelin **PSAP Barrow PSAP**

- 2) -ftp.cmdl.noaa.gov/aerosol/brw/archive/1976-1997/
 - -ftp.cmdl.noaa.gov/aerosol/brw/archive/bc/
 - -ftp://ftp.etl.noaa.gov/psd3 data are raw data files as per instrument as EBC mass (ngm⁻³).

Barrow Tiksi Summit

Recommendations for application of correction to Aethalometer data:

1. Data should be submitted to the WMO World Data Center for Aerosols in Level-0 format

See http://www.gaw-wdca.org/SubmitData/AdvancedDataReporting/Level0/FilterAbsorptionPhotometerlevel0/MageeInstrumentslevel0/tabid/10528/Default.aspx

Flagged with local contamination, instrument malfunction.

- 2. Document the level of quality control:
 - -exposed area spot size correction applied compared to what is in the firmware
 - -flow-meter calibrations
 - -identification of local contamination sector from measurements (with wind or visual)
 - -settings for transmittance when spot size is changed.
- 3. Application of suitable correction factor Collaud Coen et al., 2010 method to all level-0 data to derive the best light absorption coefficient.

R_{new,} =
$$(\frac{1}{m.(1-\omega_0)+1}).\frac{ATN_n}{50\%}+1$$

$$\sigma_{ap} = \frac{b_{ATN}}{(C_{ref} + C_{scat}).R_{new}} = \frac{A.\Delta ATN}{Q.\Delta t.C_{ref}.R_{new}}$$

Where C_{ref} = comparison of aethalometer and MAAP at Pallas site α_{new} =0 no scattering data , C_{scat} =0, m=0.74 and ω_0 = climatological value from Delene & Ogren 2002 + other sites that have simultaneous measurements to derive ω_0

σap is defined for λ =532 nm. May be problem for instruments with 880 nm.

4. Comparison of weekly σ_{ap} from step 3 to EC (thermal technique) = α_{ap}

Hourly EBC = corrected
$$\sigma_{ap}/\alpha_{ap}$$

- 5. Comparison to other techniques such as PSAP, MAAP and PAS for light absorption and Single Particle Soot Photometer and COSMOS for EBC.
- 6. Now we can start comparisons among sites and climatological influences for the trends (annual vs seasonal vs monthly values)
- 7. Look at Influence of brown carbon (biomass burning) in 7λ aethalometer wood combustion in shorter wavelength then the fossil fuel
- 8. Need resources to do these analyses need a PI dedicated for this.

Thank you for your attention!